Skip to main content

Publications

V'yacheslav (Slava) B. Akkerman

  1. S. Bilgili**, V. Bychkov, V. Akkerman*, Impacts of the Lewis and Markstein Numbers on Premixed Flame Acceleration in Channels due to Wall Friction, Phys. Fluids 34 (1), 013604 (2022). doi.org/10.1063/5.0067222
  2. Abidakun**, A. Adebiyi**, D. Valiev, V. Akkerman*, Non-Equidiffusive Premixed Flame Propagation in Obstructed Channels with Open, Nonreflectng Ends, Phys. Rev. E. 105 (1), 015104 (2022). doi.org/10.1103/PhysRevE.105.015104
  3. M. Alkhabbaz**, F. Kodakoglu**, D. Valiev, V. Akkerman*, Impacts of Wall Conditions on Flame Acceleration at the Early Stages of Burning in Pipes, Phys. Rev. Fluids 7 (1), 013201 (2022). doi.org/10.1103/PhysRevFluids.7.013201
  4. S. Ogunfuye*,**, H. Sezer, A.O. Said, A. Simeoni , V. Akkerman, An Analysis of Gas-induced Explosions in Vented Enclosures in Lithium-ion Batteries, J. Ener. Stor. 51, 104438 (2022). doi.org/10.1016/j.est.2022.104438
  5. Ugarte**, V. Akkerman*, Computational Study of Premixed Flame Propagation in Micro-channels with Nonslip Walls: Effect of Wall Temperature, Fluids 6 (1), 36 (2021). doi.org/10.3390/fluids6010036
  6. Abidakun**, A. Adebiyi**, D. Valiev, V. Akkerman*, Impacts of Fuel Nonequidiffusivity on Premixed Flame Propagation in Channels with Open Ends, Phys. Fluids 33 (1), 013604 (2021). doi.org/10.1063/5.0019152
  7. S. Ogunfuye**, H. Sezer, F. Kodakoglu**, H.F. Farahani, A.S. Rangwala, V. Akkerman*, Dynamics of Explosions in Cylindrical Vented Enclosures: Validation of a Computational Model by Experiments, Fire 4 (1), 9 (2021). doi.org/10.3390/fire4010009
  8. C.M. Dion, D.M. Valiev*, V. Akkerman, B. Demirgok**, O.J. Ugarte**, L.-E. Eriksson, V. Bychkov, Dynamics of Flame Extinction in Narrow Channels with Cold Walls: Heat Loss versus Acceleration , Phys. Fluids 33 (3), 033610 (2021). doi.org/10.1063/5.0041050
  9. S. Pokharel**, M. Ayoobi*, V. Akkerman, Computational Analysis of Premixed Syngas/Air Combustion in Micro-channels: Impacts of Flow Rate and Fuel Composition, Energies 14 (14), 4190 (2021). doi.org/10.3390/en14144190
  10. Pokharel**, V. Akkerman*, I. Celik, R.L. Axelbaum, A. Islas**, Z. Yang, Impact of Particle Loading and Phase Coupling on Gas-solid Flow Dynamics: A Case Study of a Two-phase, Gas-solid Flow in an Annular Pipe, Phys. Fluids 33 (7), 073308 (2021). doi.org/10.1063/5.0054906
  11. F. Kodakoglu**, S. Demir**, D. Valiev, V. Akkerman*, Analysis of Gaseous and Gaseous-dusty, Premixed Flame Propagation in Obstructed Passages with Tightly Placed Obstacles, Fluids 5 (3), 115 (2020). doi.org/10.3390/fluids5030115
  12. F. Kodakoglu**, V. Akkerman*, Analytical Study of an Effect of Gas Compressibility on a Burning Accident in an Obstructed Passage, Phys. Fluids 32 (7), 073602 (2020). doi.org/10.1063/1.5144400
  13. Adebiyi**, O. Abidakun**, D. Valiev, V. Akkerman*, Acceleration of Premixed Flames in Obstructed Pipes with both Extremes Open, Energies 13 (16), 4094 (2020). doi.org/10.3390/en13164094
  14. F. Kodakoglu**, H.F. Farahani, A. Rangwala, V. Akkerman*, Dynamics of Explosion Venting in Compartment with Methane-air Mixtures, J. Loss Prev. Proc. Ind. 67, 104230 (2020). doi.org/10.1016/j.jlp.2020.104230
  15. S. Bilgili**, O.J. Ugarte**, V. Akkerman*, Acoustic Coupling to the Kelvin-Helmholtz Instability in Viscous Potential Flows, Phys. Fluids 32 (8), 084108 (2020). doi.org/10.1063/5.0017448
  16. J. Wan, H. Zhao*, V. Akkerman, Anchoring Mechanisms of a Holder-Stabilized Premixed Flame in a Preheated Mesoscale Combustor , Phys. Fluids 32 (9), 097103 (2020). doi.org/10.1063/5.0021864
  17. Adebiyi**, E. Ridgeway**, R. Alkandari**, A. Cathreno**, D. Valiev**, V. Akkerman*, Premixed Flame Oscillations in Obstructed Channels with both Ends Open, Proc. Combust. Inst. 37 (2), 1919-1926 (2019). doi.org/10.1016/j.proci.2018.07.058
  18. S. Demir**, H. Sezer, T. Bush**, V. Akkerman*, Promotion and Mitigation of Premixed Flame Propagation in a Gaseous-Dusty Environment with Various Dust Distributions, Fire Safety Journal 105, 270-276 (2019). doi.org/10.1016/j.firesaf.2019.02.005
  19. Adebiyi**, R. Alkandari**, D. Valiev, V. Akkerman*, Effect of Surface Friction on Ultrafast Flame Acceleration in Obstructed Cylindrical Pipes , AIP Advances 9, 035249 (2019). doi.org/10.1063/1.5087139
  20. Adebiyi**, O. Abidakun**, G. Idowu**, D. Valiev, V. Akkerman*, Analysis of Nonequidiffusive Premixed Flames in Obstructed Channels, Phys. Rev. Fluids 4 (6), 063201 (2019). doi.org/10.1103/PhysRevFluids.4.063201
  21. M. Alkhabbaz**, O. Abidakun**, D. Valiev, V. Akkerman*, Impact of the Lewis Number on Finger Flame Acceleration at the Early Stage of Burning in Channels and Tubes, Phys. Fluids 31 (8), 083606 (2019). doi.org/10.1063/1.5108805
  22. S. Demir**, A.R. Calavay**, V. Akkerman*, Influence of Gas Compressibility on a Burning Accident in a Mining Passage, Combust. Theory Model. 22 (2), 338-358 (2018). doi.org/10.1080/13647830.2017.1403654
  23. S. Demir**, H. Sezer, V. Akkerman*, Effect of Local Variations of the Laminar Flame Speed on the Global Finger-Flame Acceleration Scenario, Combust. Theory Model. 22 (5), 898-912 (2018). doi.org/10.1080/13647830.2018.1465206
  24. V. Akkerman*, D. Valiev, Moderation of Flame Acceleration in Obstructed Cylindrical Pipes due to Gas Compression, Phys. Fluids 30 (10), 106101 (2018). doi.org/10.1063/1.5049736
  25. N. Clark*, D. McKain, D. Johnson, S. Wayne, H. Li, V. Akkerman, C. Sandoval, A. Covington, R. Mongold, J. Hailer, O.J. Ugarte**, Pump-to-wheels Methane Emissions from the Heavy-duty Transportation Sector, Environ. Sci. Tech. 51, 968-976 (2017). doi.org/10.1021/acs.est.5b06059
  26. V. Bychkov, J. Sadek**, V. Akkerman*, Analysis of Flame Acceleration in Open or Vented Obstructed Pipes, Phys. Rev. E 95 (1), 013111 (2017). doi.org/10.1103/PhysRevE.95.013111
  27. H. Sezer*, F. Kronz**, V. Akkerman, A.S. Rangwala, Methane-induced Explosions in Vented Enclosures, J. Loss Prev. Proc. Ind. 48, 199-206 (2017). doi.org/10.1016/j.jlp.2017.04.009
  28. S. Demir**, V. Bychkov, S.H.R. Chalagalla**, V. Akkerman*, Towards Predictive Scenario of a Burning Accident in a Mining Passage, Combust. Theory Model. 21 (6), 997-1022 (2017). doi.org/10.1080/13647830.2017.1328129
  29. Ugarte*,**, V. Akkerman, A. Rangwala, A Computational Platform for Gas Explosion Venting, Proc. Saf. Env. Prot. 99, 167-174 (2016). doi.org/10.1016/j.psep.2015.11.001
  30. V. Akkerman*, C.K. Law, Coupling of Harmonic Flow Oscillations to Combustion Instability in Premixed Segments of Triple Flames, Combust. Flame 172, 342-348 (2016). doi.org/10.1016/j.combustflame.2016.07.019
  31. Ugarte**, V. Bychkov, J. Sadek, D. Valiev, V. Akkerman*, Critical Role of Blockage Ratio for Flame Acceleration in Channels with Tightly-Spaced Obstacles , Phys. Fluids 28 (9), 093602 (2016). doi.org/10.1063/1.4961648
  32. Demirgok**, O. Ugarte**, D. Valiev, V. Akkerman*, Effect of Thermal Expansion on Flame Propagation in Channels with Nonslip Walls, Proc. Combust. Inst. 35 (1), 929-936 (2015). doi.org/10.1016/j.proci.2014.07.031
  33. S. Ranganathan, M. Lee, V. Akkerman, A. Rangwala*, Extinction of Premixed Flames with Inert Particles, J. Loss Prev. Proc. Ind. 35, 46-51 (2015). doi.org/10.1016/j.jlp.2015.03.009
  34. Demirgok**, H. Sezer, V. Akkerman*, Flame Acceleration due to Wall Friction: Accuracy and Intrinsic Limitations of the Formulations, Mod. Phys. Lett. B 29 (32), 1550205 (2015). doi.org/10.1142/S021798491550205X

Omid Askari

  1. Roy, S. and Askari, O., 2022, “Detailed Kinetics for Anisole Oxidation under Various Range of Operating Conditions”, Journal of Fuel, 325, 124907. https://doi.org/10.1016/j.fuel.2022.124907
  2. Shaffer, J., Zare, S. and Askari, O., 2022, "Electrode Design for Thermal and Nonthermal Plasma Discharge Inside a Constant Volume Combustion Chamber", J. Energy Resour. Technol, 144(8): 082306. https://doi.org/10.1115/1.4053142
  3. Hadi, F., Roy, S., Askari, O and Beretta, GP., 2021, " A Reformulation of Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method", J. Energy Resour. Technol., JERT-21-1101. https://doi.org/10.1115/1.4050815
  4. Roy, S. and Askari, O., 2020, “A New Detailed Ethanol Kinetic Mechanism at Engine-Relevant Conditions”, Journal of Energy&Fuel, 34, 3691-3708. https://doi.org/10.1021/acs.energyfuels.9b03314
  5. Zare, S., Lo, H.W., Roy, S. and Askari, O., 2020, “On the Low-Temperature Plasma Discharge in Methane/Air Diffusion Flames”, Journal of Energy, 197 117185. https://doi.org/10.1016/j.energy.2020.117185
  6. Zare, S., Lo, H.W. and Askari, O., 2020, “Flame Stability in Inverse Coaxial Injector using Repetitive Nanosecond Pulsed Plasma”, J. Energy Resour. Technol., 142 (8). https://doi.org/10.1115/1.4046227
  7. Roy, S. and Askari, O., 2020, “Study of the Constraint Selection through ASVDADD Method for Rate Controlled Constrained Equilibrium Modeling on Ethanol Oxidation without PLOG Reactions”, J. Energy Resour. Technol., 142 (7). https://doi.org/10.1115/1.4046526
  8. Kolahdooz, H., Nazari, M., Kayhani, M. H., Ebrahimi, R., and Askari, O., 2019, “Effect of Obstacle Type on Methane-Air Flame Propagation in a Closed Duct: An Experimental Study,” J. Energy Resour. Technol. Trans. ASME, 141(11). https://doi.org/10.1115/1.4043790
  9. Kim, K., and Askari, O., 2019, “Understanding the Effect of Capacitive Discharge Ignition on Plasma Formation and Flame Propagation of Air–Propane Mixture,” J. Energy Resour. Technol., 141(8), p. 082201. https://doi.org/10.1115/1.4042480
  10. Zare, S., Roy, S., El Maadi, A., and Askari, O., 2019, “An investigation on laminar burning speed and flame structure of anisole-air mixture,” Journal of Fuel, 244, pp. 120–131. https://doi.org/10.1016/j.fuel.2019.01.149
  11. Roy, S., Zare, S., and Askari, O., 2019, “Understanding the Effect of Oxygenated Additives on Combustion Characteristics of Gasoline,” J. Energy Resour. Technol., 141(2), p. 022205. https://doi.org/10.1115/1.4041316
  12. Yu, G., Metghalchi, H., Askari, O., and Wang, Z., 2019, “Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium,” J. Energy Resour. Technol., 141(2), p. 022204. https://doi.org/10.1115/1.4041289
  13. Askari, O., 2018, “Thermodynamic Properties of Pure and Mixed Thermal Plasmas Over a Wide Range of Temperature and Pressure,” J. Energy Resour. Technol., 140(3), p. 32202. https://doi.org/10.1115/1.4037688
  14. Yu, G., Askari, O., and Metghalchi, H., 2018, “Theoretical Prediction of the Effect of Blending JP-8 With Syngas on the Ignition Delay Time and Laminar Burning Speed,” J. Energy Resour. Technol., 140(1), p. 12204. https://doi.org/10.1115/1.4037376

Madelyn Ball

  1. Nezam, I.; Zhou, W.; Shah, D. R.; Bukhovko, M. P.; Ball, M. R.; Gusmão, G. S.; Medford, A. J.; Jones, C. W. Role of Catalyst Domain Size in the Hydrogenation of CO2 to Aromatics over ZnZrOx/ZSM-5 Catalysts. J. Phys. Chem. C 2023. https://doi.org/10.1021/acs.jpcc.3c01306.
  2. Ball, M. R.; Proaño, L.; Nezam, I.; Lee, D.-C.; Alamgir, F.; Jones, C. W. Citral Hydrogenation over Dilute Alloy Catalysts. ChemCatChem 2023, 15 (5), e202201396. https://doi.org/10.1002/cctc.202201396.
  3. Park, S. J.; Wang, X.; Ball, M. R.; Proano, L.; Wu, Z.; Jones, C. W. CO2 Methanation Reaction Pathways over Unpromoted and NaNO3-Promoted Ru/Al2O3 Catalysts. Catal. Sci. Technol. 2022, 12 (14), 4637–4652. https://doi.org/10.1039/D2CY00515H.
  4. Ball, M. R.; Rivera-Dones, K. R.; Gilcher, E. B.; Ausman, S. F.; Hullfish, C. W.; Lebrón, E. A.; Dumesic, J. A. AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene. ACS Catalysis 2020, 10 (15), 8567–8581. https://doi.org/10.1021/acscatal.0c01536.

Cosmin Dumitrescu

  1. Liu, J., Huang, Q., Ulishney, C., and Dumitrescu, C. E. “Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine.” Applied Energy Vol. 300 (2021): p. 117413. DOI:10.1016/j.apenergy.2021.117413.
  2. Liu, J., Ulishney, C. J., and Dumitrescu, C. E. “Effect of Spark Timing on the Combustion Stages Seen in a Heavy-Duty Compression-Ignition Engine Retrofitted to Natural Gas Spark-Ignition Operation.” SAE Int J Engines Vol. 14 No. 3 (2021): pp. 335-344. DOI:10.4271/03-14-03-0020.
  3. Liu, J., Ulishney, C. J., and Dumitrescu, C. E. “Experimental investigation of a heavy-duty natural gas engine performance operated at stoichiometric and lean operations.” Energy Conversion and Management Vol. 243 No. (2021): p. 114401. DOI:10.1016/j.enconman.2021.114401.
  4. Liu, J., Ulishney, C., and Dumitrescu, C. E. “Random Forest Machine Learning Model for Predicting Combustion Feedback Information of a Natural Gas Spark Ignition Engine.” J Energy Res Technol Vol. 143 No. 1 (2021): p. 7. DOI:10.1115/1.4047761.
  5. Lalsare, A. D., Leonard, B., Robinson, B., Sivri, A. C., Vukmanovich, R., Dumitrescu, C., Rogers, W., and Hu, J. “Self-regenerable carbon nanofiber supported Fe – Mo2C catalyst for CH4-CO2 assisted reforming of biomass to hydrogen rich syngas.” Applied Catalysis B: Environmental Vol. 282 (2021): p. 119537. DOI:10.1016/j.apcatb.2020.119537.
  6. Huang, Q., Liu, J., Ulishney, C., and Dumitrescu, C. E. “On the use of artificial neural networks to model the performance and emissions of a heavy-duty natural gas spark ignition engine.” International Journal of Engine Research Vol. OnlineFirst (2021): p. 14680874211034409. DOI:10.1177/14680874211034409.
  7. Liu, J. and Dumitrescu, C. E. “Limitations of Natural Gas Lean Burn Spark Ignition Engines Derived From Compression Ignition Engines.” Journal of Energy Resources Technology Vol. 142(12): pp. 122309-122301, 2020. DOI:10.1115/1.40474.
  8. Liu, J., Ulishney, C., and Dumitrescu, C. E. “Characterizing Two-Stage Combustion Process in a Natural Gas Spark Ignition Engine Based on Multi-Wiebe Function Model.” Journal of Energy Resources Technology Vol. 142(10): pp. 102302 (8 pages), 2020. DOI:10.1115/1.4046793.
  9. Liu, J. and Dumitrescu C. E., “Investigation of multistage combustion inside a heavy-duty natural-gas spark-ignition engine using 3D CFD simulations and the Wiebe-function combustion model.” Journal of Engineering for Gas Turbines and Power Vol. 142(10): pp. 101012 (7 pages), 2020. DOI:10.1115/1.4045869.
  10. Lalsare, A., Sivri, A., Egan, R., Vukmanovich, R. J., Dumitrescu, C. E., and Hu, J. “Biomass – flare gas synergistic co-processing in the presence of carbon dioxide for the controlled production of syngas (H2:CO ∼ 2 – 2.5).” Chemical Engineering Journal Vol. 385(1): pp. 123783, 2020. DOI: 10.1016/j.cej.2019.123783.
  11. Liu, J. and Dumitrescu, C.E., “Improved thermodynamic model for lean natural-gas spark-ignition in a diesel engine using a triple-Wiebe function.” Journal of Energy Resources Technology Vol. 142(6): pp. 062303 (7 pages), 2020. DOI:10.1115/1.4045534.
  12. Liu, J. and Dumitrescu, C.E., “Methodology to Determine the Fast Burn Period Inside a Heavy-Duty Diesel Engine Converted to Natural Gas Lean-Burn Spark Ignition Operation.” Journal of Advances and Current Practices in Mobility Vol. 2(1): pp. 346-356, 2020. DOI:10.4271/2019-01-2220.
  13. Liu, J. and Dumitrescu, C.E., “Multiple Combustion Stages inside a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark-Ignition Operation.” Journal of Engineering for Gas Turbines and Power Vol. 142(2), pp. 021018, 2020. DOI:10.1115/1.4044492.
  14. Lalsare, A., Wang, Y., Li, Q., Sivri, A., Vukmanovich, R. J., Dumitrescu, C. E., and Hu, J. “Hydrogen-Rich Syngas Production through Synergistic Methane-Activated Catalytic Biomass Gasification.” ACS Sustainable Chemistry & Engineering, Vol. 7(19), pp.16060-16071, 2019. DOI:10.1021/acssuschemeng.9b02663.
  15. Liu, J. and Dumitrescu, C.E., “Analysis of Two-Stage Natural-Gas Lean Combustion inside a Diesel Geometry,” Applied Thermal Engineering, Vol. 160, pp. 114116, 2019, DOI:10.1016/j.applthermaleng.2019.114116
  16. Liu, J. and Dumitrescu, C.E., “Methodology to Separate the Two Burn Stages of Natural-Gas Lean Premixed-Combustion inside a Diesel Geometry,” Energy Conversion and Management, Vol. 195, pp. 21-31, 2019, https://doi.org/10.1016/j.enconman.2019.04.091
  17. Liu, J. and Dumitrescu, C.E., “Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition,” Applied Energy Vol. 248, pp. 95-103, 2019. DOI:10.1016/j.apenergy.2019.04.098
  18. Liu, J. and Dumitrescu, C.E., “Numerical Investigation of Methane Number and Wobbe Index Effects in Lean-Burn Natural Gas Spark-Ignition Combustion.” Energy & Fuels Vol. 33(5), pp. 4564-4574, 2019. DOI:10.1021/acs.energyfuels.8b04463.
  19. Liu, J. and Dumitrescu, C.E., “Lean-Burn Characteristics of a Heavy-Duty Diesel Engine Retrofitted to Natural-Gas Spark Ignition.” Journal of Engineering for Gas Turbines and Power Vol. 141(7), pp. 071013-071013-11, 2019. DOI:10.1115/1.4042501
  20. Liu, J. and Dumitrescu, C.E., “Combustion Partitioning Inside a Natural Gas Spark Ignition Engine with a Bowl-in-Piston Geometry,” Energy Conversion and Management, Vol. 183, pp. 73-83, 2019, https://doi.org/10.1016/j.enconman.2018.12.118
  21. Liu, J. and Dumitrescu C.E. “Numerical Simulation of Re-Entrant Bowl Effects on Natural Gas SI Operation.” Journal of Engineering for Gas Turbines and Power, Vol. 141(6), pp. 061023-061023-10, 2019.
  22. Liu, J., Bommisetty, H., and Dumitrescu C.E. “Experimental Investigation of a Heavy-Duty CI Engine Retrofitted to Natural Gas SI Operation.” Journal of Energy Resources Technology, Vol. 141(11), pp. 112207-112207-12, 2019.
  23. Stocchi, I., Liu, J., Dumitrescu, C.E., Battistoni, M., and Grimaldi, C. N. “Effect of Piston Crevices on 3D Simulation of a Heavy-Duty Diesel Engine Retrofitted to Natural Gas Spark Ignition.” Journal of Energy Resources Technology, Vol. 141(11), pp. 112204-112204-8, 2019.
  24. Liu, J. and Dumitrescu, C.E., “Optical analysis of flame inception and propagation in a lean-burn natural-gas spark-ignition engine with a bowl-in-piston geometry,” International Journal of Engine Research, pp.1468087418822852, 2019, https://doi.org/10.1177/1468087418822852.
  25. Liu, J. and Dumitrescu, C.E., “Flame development analysis in a diesel optical engine converted to spark ignition natural gas operation,” Applied Energy, Vol. 230, pp. 1205-1217, 2018, DOI: 10.1016/j.apenergy.2018.09.059.

John Hu

  1. Wang, X.; Wang, Y.; Robinson, B.; Wang, Q.; Hu, J. Ethane Oxidative Dehydrogenation by CO2 over Stable CsRu/CeO2 Catalyst. Journal of Catalysis 2022 , 413, 138–149. https://doi.org/10.1016/j.jcat.2022.06.021.
  2. Jiang, C.; Wang, I.-W.; Bai, X.; Balyan, S.; Robinson, B.; Hu, J.; Li, W.; Deibel, A.; Liu, X.; Li, F.; Neal, L. M.; Dou, J.; Jiang, Y.; Dagle, R.; Lopez-Ruiz, J. A.; Skoptsov, G. Methane Catalytic Pyrolysis by Microwave and Thermal Heating over Carbon Nanotube-Supported Catalysts: Productivity, Kinetics, and Energy Efficiency. Ind. Eng. Chem. Res. 2022, 61 (15), 5080–5092. https://doi.org/10.1021/acs.iecr.1c05082.
  3. Bai, X.; Muley, P. D.; Musho, T.; Abdelsayed, V.; Robinson, B.; Caiola, A.; Shekhawat, D.; Jiang, C.; Hu, J. A Combined Experimental and Modeling Study of Microwave-Assisted Methane Dehydroaromatization Process. Chemical Engineering Journal 2022, 433, 134445. https://doi.org/10.1016/j.cej.2021.134445.
  4. Caiola, A.; Robinson, B.; Bai, X.; Shekhawat, D.; Hu, J. Study of the Hydrogen Pretreatment of Gallium and Platinum Promoted ZSM-5 for the Ethane Dehydroaromatization Reaction. Industrial and Engineering Chemistry Research 2021, 60 (30), 11421–11431. https://doi.org/10.1021/acs.iecr.1c01555.
  5. Wang, I.-W.; Dagle, R. A.; Khan, T. S.; Lopez-Ruiz, J. A.; Kovarik, L.; Jiang, Y.; Xu, M.; Wang, Y.; Jiang, C.; Davidson, S. D.; Tavadze, P.; Li, L.; Hu, J. Catalytic Decomposition of Methane into Hydrogen and High-Value Carbons: Combined Experimental and DFT Computational Study. Catal. Sci. Technol. 2021, 11 (14), 4911–4921. https://doi.org/10.1039/D1CY00287B.
  6. Deng, Y.; Bai, X.; Abdelsayed, V.; Shekhawat, D.; Muley, P. D.; Karpe, S.; Mevawala, C.; Bhattacharyya, D.; Robinson, B.; Caiola, A.; Powell, J. B.; van Bavel, A. P.; Hu, J.; Veser, G. Microwave-Assisted Conversion of Methane over H-(Fe)-ZSM-5: Evidence for Formation of Hot Metal Sites. Chemical Engineering Journal 2021, 420, 129670. https://doi.org/10.1016/j.cej.2021.129670.
  7. Mevawala, C.; Bai, X.; Bhattacharyya, D.; Hu, J. Dynamic Data Reconciliation, Parameter Estimation, and Multi-Scale, Multi-Physics Modeling of the Microwave-Assisted Methane Dehydroaromatization Process. Chemical Engineering Science 2021, 239, 116624. https://doi.org/10.1016/j.ces.2021.116624.
  8. Mevawala, C.; Bai, X.; Kotamreddy, G.; Bhattacharyya, D.; Hu, J. Multiscale Modeling of a Direct Nonoxidative Methane Dehydroaromatization Reactor with a Validated Model for Catalyst Deactivation. Ind. Eng. Chem. Res. 2021, 60 (13), 4903–4918. https://doi.org/10.1021/acs.iecr.0c05493.
  9. Lalsare, A. D.; Khan, T. S.; Leonard, B.; Vukmanovich, R.; Tavazohi, P.; Li, L.; Hu, J. Graphene-Supported Fe/Ni, β-Mo2C Nanoparticles: Experimental and DFT Integrated Approach to Catalyst Development for Synergistic Hydrogen Production through Lignin-Rich Biomass Reforming and Reduced Shale Gas Flaring. ACS Catal. 2021, 11 (1), 364–382. https://doi.org/10.1021/acscatal.0c04242.
  10. Xu, M.; Lopez-Ruiz, J. A.; Kovarik, L.; Bowden, M. E.; Davidson, S. D.; Weber, R. S.; Wang, I.-W.; Hu, J.; Dagle, R. A. Structure Sensitivity and Its Effect on Methane Turnover and Carbon Co-Product Selectivity in Thermocatalytic Decomposition of Methane over Supported Ni Catalysts. Applied Catalysis A: General 2021, 611, 117967. https://doi.org/10.1016/j.apcata.2020.117967.
  11. Lalsare, A. D.; Leonard, B.; Robinson, B.; Sivri, A. C.; Vukmanovich, R.; Dumitrescu, C.; Rogers, W.; Hu, J. Self-Regenerable Carbon Nanofiber Supported Fe – Mo2C Catalyst for CH4-CO2 Assisted Reforming of Biomass to Hydrogen Rich Syngas. Applied Catalysis B: Environmental 2021, 282, 119537. https://doi.org/10.1016/j.apcatb.2020.119537.
  12. Li, Q.; Wang, Y.; Hu, J. Synthesis of C4 Olefins from Acetylene over Supported Copper Catalysts. ChemCatChem 2020, 12 (12), 3321–3331. https://doi.org/10.1002/cctc.202000396.
  13. Wang, Y.; Caiola, A.; Robinson, B.; Li, Q.; Hu, J. Hierarchical Galloaluminosilicate MFI Catalysts for Ethane Nonoxidative Dehydroaromatization. Energy Fuels 2020, 34 (3), 3100–3109. https://doi.org/10.1021/acs.energyfuels.9b04457.
  14. Robinson, B.; Caiola, A.; Bai, X.; Abdelsayed, V.; Shekhawat, D.; Hu, J. Catalytic Direct Conversion of Ethane to Value-Added Chemicals under Microwave Irradiation. Catalysis Today 2020, 356, 3–10. https://doi.org/10.1016/j.cattod.2020.03.001.
  15. Lalsare, A.; Sivri, A.; Egan, R.; Vukmanovich, R. J.; Dumitrescu, C. E.; Hu, J. Biomass – Flare Gas Synergistic Co-Processing in the Presence of Carbon Dioxide for the Controlled Production of Syngas (H2:CO ~ 2 – 2.5). Chemical Engineering Journal 2020, 385, 123783. https://doi.org/10.1016/j.cej.2019.123783.
  16. Li, Q.; Wang, Y.; Skoptsov, G.; Hu, J. Selective Hydrogenation of Acetylene to Ethylene over Bimetallic Catalysts. Industrial and Engineering Chemistry Research 2019, 58, 20620–20629. https://doi.org/10.1021/acs.iecr.9b04604.

Wenyuan Li

  1. Y Wang, W Li , L Ma, W Li, X Liu, Degradation of solid oxide electrolysis cells: phenomena, mechanisms, and emerging mitigation strategies–a review , Journal of Materials Science & Technology, 55 (2020) 35-55.
  2. H Qi, F Xia, T Yang, W Li , W Li, L Ma, G Collins, W Shi, H Tian, S Hu, In Situ Exsolved Nanoparticles on La0.5Sr1.5Fe1.5Mo0.5O6-δ Anode Enhance the Hydrogen Oxidation Reaction in SOFCs , Journal of The Electrochemical Society 167 (2020), 024510.
  3. W Tang, H Ding, W Bian, W Wu, W Li , X Liu, JY Gomez, CYR Vera, Understanding of A-site deficiency in layered perovskites: promotion of dual reaction kinetics for water oxidation and oxygen reduction in protonic ceramic electrochemical cells , Journal of Materials Chemistry A 29 (2020), 14600-14608.
  4. S Hu, H Finklea, W Li , W Li, H Qi, N Zhang, X Liu, Alternating current electrophoretic deposition of gadolinium doped ceria onto yttrium stabilized zirconia: a study of the mechanism , ACS Applied Materials & Interfaces 12 (2020), 11126-11134.
  5. H Qi, YL Lee, T Yang, W Li , W Li, L Ma, S Hu, Y Duan, GA Hackett, X Liu, Positive Effects of H2O on the Hydrogen Oxidation Reaction on Sr2Fe1.5Mo0.5O6−δ-Based Perovskite Anodes for Solid Oxide Fuel Cells , ACS Catalysis 10 (2020), 5567-5578.
  6. F Hao, Y Gao, L Neal, RB Dudek, W Li , C Chung, B Guan, P Liu, X Liu, Sodium tungstate-promoted CaMnO3 as an effective, phase-transition redox catalyst for redox oxidative cracking of cyclohexane , Journal of Catalysis 385 (2020), 213-223.
  7. L Zhou, J Mason, W Li , X Liu, Comprehensive review of chromium deposition and poisoning of Solid oxide fuel cells (SOFCs) cathode materials , Renewable & Sustainable Energy Reviews 2020, in press.
  8. Y Wang, L Ma, W Li , W Li, X Liu, High-temperature mixed potential CO gas sensor for in-situ combustion control , Journal of Materials Chemistry A 38 (2020), 20101-20110.
  9. S Hu, W Li , H Finklea, X Liu, A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells , Advances in Colloid and Interface Science 276 (2020), 102102.
  10. X Chen, W Li, Y Xu, Z Zeng, H Tian, M Velayutham, W Shi, W Li , C Wang, Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries , Nano Energy 75 (2020), 104869.
  11. H Tian, W Li , L Ma, T Yang, B Guan, W Shi, TL Kalapos, X Liu, Deconvolution of Water-Splitting on the Triple-Conducting Ruddlesden–Popper-Phase Anode for Protonic Ceramic Electrolysis Cells , ACS Applied Materials & Interfaces 44 (2020), 49574-49585.
  12. W Li , B Guan, T Yang, Z Li, W Shi, H Tian, L Ma, TL Kalapos, X Liu, Layer-structured triple-conducting electrocatalyst for water-splitting in protonic ceramic electrolysis cells: Conductivities vs. activity , Journal of Power Sources 495 (2021), 229764.
  13. 13. L Ma, Y Wang, W Li , B Guan, H Qi, H Tian, L Zhou, HA De Santiago, X Liu, Redox-stable symmetrical solid oxide fuel cells with exceptionally high performance enabled by electrode/electrolyte diffuse interface , Journal of Power Sources 488 (2021), 229458.
  14. L Zhou, Z Zeng, M. Brady, D Leonard, H Meyer, Y, Yamamoto, W Li , G Collins, X Liu, Chromium Evaporation and Oxidation Characteristics of Alumina-Forming Austenitic Stainless Steels for Balance of Plant Applications in Solid Oxide Fuel Cells , International Journal of Hydrogen Energy, 46 (41), 21619-21633.
  15. Z Li, B Guan, F Xia, J Nie, W Li , L Ma, W Li, L Zhou, Y Wang, H Tian, J Luo, Y Chen, M Frost, K An, X Liu, High-Entropy Perovskite as a High-Performing Chromium-Tolerant Cathode for Solid Oxide Fuel Cells , ACS Applied Materials & Interfaces, 2022, 14, 21, 24363–24373
  16. H Tian, Z Luo, Y Song, Y Zhou, M Gong, W Li , Z Shao, M Liu, X Liu, Protonic ceramic materials for clean and sustainable energy: advantages and challenges , International Materials Reviews, 1-29.
  17. Y Wang, L Ma, W Li, AM Deibel, W Li , H Tian, X Liu, NiO-based sensor for in situ CO monitoring above 1000° C: behavior and mechanism , Advanced Composites and Hybrid Materials, 1-13.
  18. EV Hiraldo, AFS Molouk, H Tian, AB Abdallah, W Li , X Liu, Surface decorations to abrupt change performance, robustness, and stability of electrodes for solid oxide cells , Journal of the American Ceramic Society.